Math 253 - Fall 2008 Test 3 (16.1-18.2)
Name:
You must show complete work for credit.

1) $\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) d x d y$
a) Sketch the region of integration.

b) Reverse the order of integration and evaluate (leave your answer in exact form).
2) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} d z d y d x$ represents the volume of an "ice cream cone" shaped region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$, and bounded above by a hemisphere $z=\sqrt{2-x^{2}-y^{2}}$.

a) Express this integral in cylindrical coordinates (do not evaluate).
b) Express this integral in spherical coordinates (do not evaluate).
3) A cork is thrown into a stream of water that has the velocity field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$.
a) Set up a system of differential equations for the flow line the cork will follow.
b) Show that $x(t)=a \sin (t), y(t)=a \cos (t)$ is a solution to the system of differential equations.
4) An airplane is flying in stormy weather. The velocity of the wind at each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is given by $\mathbf{W}(x, y, z)=x^{3} \mathbf{i}+y^{2} \mathbf{j}+z \mathbf{k}$. Use the method of parameterization to calculate the amount of work the wind does on the plane as it flies in a straight line from the point $(0,2,3)$ to the point $(2,5,4)$.

5) Conceptual Problems:

a) Draw a triangular region that could be expressed as a single double-integral in the order $\mathrm{d} x \mathrm{~d} y$, but would require more than one double-integral in the $\mathrm{d} y \mathrm{~d} x$ order.

b) The vector field \mathbf{F} is shown below. Draw a path C such that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is clearly negative. Be sure to indicate the direction of the path!

Let R be the cube with one corner at $(0,0,0)$ and its opposite corner at $(2,2,2)$, and let the density at each point in the cube be given by a function $f(x, y, z)$.
c) Write a triple-integral representing the mass of the cube.
d) Write a triple-integral representing the average density of the cube.
e) Let R be the area inside the unit-circle centered at the origin. Determine the value of c that will make the integral zero. (Hint: there is no need for integration... think graphically).
$\iint_{R}(2 x+c) d A$

$$
C=
$$

\qquad

